Localization Operators and an Uncertainty Principle for the Discrete Short Time Fourier Transform
نویسندگان
چکیده
منابع مشابه
An uncertainty principle for quaternion Fourier transform
We review the quaternionic Fourier transform (QFT). Using the properties of the QFT we establish an uncertainty principle for the right-sided QFT. This uncertainty principle prescribes a lower bound on the product of the effective widths of quaternion-valued signals in the spatial and frequency domains. It is shown that only a Gaussian quaternion signal minimizes the uncertainty.
متن کاملSharp Continuity Results for the Short-time Fourier Transform and for Localization Operators
We completely characterize the boundedness on Wiener amalgam spaces of the short-time Fourier transform (STFT), and on both L and Wiener amalgam spaces of a special class of pseudodifferential operators, called localization operators. Precisely, sufficient conditions for the STFT to be bounded on the Wiener amalgam spaces W (L, L) are given and their sharpness is shown. Localization operators a...
متن کاملUncertainty relations and minimum uncertainty states for the discrete Fourier transform and the Fourier series
Abstract The conventional Fourier transform has a well-known uncertainty relation that is defined in terms of the first and second moments of both a function and its Fourier transform. It is also well known that Gaussian functions, when translated to an arbitrary centre and supplemented by a linear phase factor, provide a complete set of minimum uncertainty states (MUSs) that exactly satisfies ...
متن کاملHeisenberg Uncertainty Principle for the q-Bessel Fourier transform
In this paper we uses an I.I. Hirschman-W. Beckner entropy argument to give an uncertainty inequality for the q-Bessel Fourier transform: Fq,vf(x) = cq,v ∫ ∞ 0 f(t)jv(xt, q 2)t2v+1dqt, where jv(x, q) is the normalized Hahn-Exton q-Bessel function.
متن کاملAn Uncertainty Principle for the Dunkl Transform
The Dunkl transform is an integral transform on R" which generalises the classical Fourier transform. On suitable function spaces, it establishes a natural correspondence between the action of multiplication operators on one hand and so-called Dunkl operators on the other. These are differential-difference operators, generalising the usual partial derivatives, which are associated with a finite...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2014
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2014/131459