Localization Operators and an Uncertainty Principle for the Discrete Short Time Fourier Transform

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An uncertainty principle for quaternion Fourier transform

We review the quaternionic Fourier transform (QFT). Using the properties of the QFT we establish an uncertainty principle for the right-sided QFT. This uncertainty principle prescribes a lower bound on the product of the effective widths of quaternion-valued signals in the spatial and frequency domains. It is shown that only a Gaussian quaternion signal minimizes the uncertainty.

متن کامل

Sharp Continuity Results for the Short-time Fourier Transform and for Localization Operators

We completely characterize the boundedness on Wiener amalgam spaces of the short-time Fourier transform (STFT), and on both L and Wiener amalgam spaces of a special class of pseudodifferential operators, called localization operators. Precisely, sufficient conditions for the STFT to be bounded on the Wiener amalgam spaces W (L, L) are given and their sharpness is shown. Localization operators a...

متن کامل

Uncertainty relations and minimum uncertainty states for the discrete Fourier transform and the Fourier series

Abstract The conventional Fourier transform has a well-known uncertainty relation that is defined in terms of the first and second moments of both a function and its Fourier transform. It is also well known that Gaussian functions, when translated to an arbitrary centre and supplemented by a linear phase factor, provide a complete set of minimum uncertainty states (MUSs) that exactly satisfies ...

متن کامل

Heisenberg Uncertainty Principle for the q-Bessel Fourier transform

In this paper we uses an I.I. Hirschman-W. Beckner entropy argument to give an uncertainty inequality for the q-Bessel Fourier transform: Fq,vf(x) = cq,v ∫ ∞ 0 f(t)jv(xt, q 2)t2v+1dqt, where jv(x, q) is the normalized Hahn-Exton q-Bessel function.

متن کامل

An Uncertainty Principle for the Dunkl Transform

The Dunkl transform is an integral transform on R" which generalises the classical Fourier transform. On suitable function spaces, it establishes a natural correspondence between the action of multiplication operators on one hand and so-called Dunkl operators on the other. These are differential-difference operators, generalising the usual partial derivatives, which are associated with a finite...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Abstract and Applied Analysis

سال: 2014

ISSN: 1085-3375,1687-0409

DOI: 10.1155/2014/131459